TCW JIP Study Status Update: Summary of Preliminary 2019 TCW Discharge Sample Data and Next Steps

USEPA Region 4 and Region 6 January 28, 2020

Presentation Purpose and Objectives

- The purpose of this presentation is to provide USEPA Region 4 and Region 6 with a Joint Industry Project (JIP) study status update.
- The objectives of this presentation are to:
 - Present an overview of preliminary 2019 results.
 - Summarize the types of TCW discharges sampled in 2019.
 - Present preliminary 48-hour (48-h) whole effluent toxicity (WET) test results.
 - Present the preliminary results of laboratory chemical analyses.
 - Review the selection of TCW discharge samples for 2020.

Overview

- Operators and vendors provided the information necessary to meet JIP study data quality objectives.
- Since USEPA approval of the JIP study plan, three Category I TCW discharge samples were collected for analysis in 2019. Discharge duration is short (range 0.5 to 1.5 hours).
- Samples were evaluated with acute, 48-h whole effluent toxicity (WET) and laboratory chemical testing. All WET test samples were collected within the laboratory holding time (36 hours).
- TCW samples are highly saline. WET test treatments from 50% to ≈3% effluent exhibit salinity concentrations greater than the biological range of the test organisms.
- Acute effects were bracketed by the selected WET test effluent dilution series.
- Americamysis bahia (Mysid) is more sensitive than Menidia beryllina (Inland silverside minnow).
- The chemical composition of TCW samples at effluent dilutions ranging from 0.4 to 0.5% was similar to laboratory diluent for the tested samples.
- Up to 20 TCW discharge samples could potentially be collected in 2020.

General TCW Discharge Characteristics

Characteristics	TCW-1	Sample TCW-2	TCW-3
Sample Collection Date	12/19/2019	11/8/2019	11/25/2019
Type of Operation	Zonal Isolation	Completion	Workover
Type of TCW Fluid Used?	Category I brine; CaCl ₂ 10.5 ppg	Category I brine; CaBr ₂ 12.1 ppg	Category I brine; CaCl ₂ 11.6 ppg
Are chemical additives used?	No	Yes	Yes
Depth from Discharge to Seafloor (meters)	710	1,251	2,681
Duration of Discharge (hr.)	1.25	0.5	1.5
Discharge Volume over Duration of Discharge (bbl)	965	272	1,476
Sample Salinity (100% Effluent) (ppt)	358	57.8	354
Notes: ppg; pounds per gallon ppt; parts per thousand bbl; barrel hr.; hour nmary of Preliminary 2019 TCW Discharge Sample Data and Next Steps	age 4		A=COM

DRAFT for Discussion Only

Preliminary WET Data - Salinity of TCW Samples

WET test treatments from 50% to ≈3% effluent exhibit salinity concentrations greater than the biological range of the test organisms.

USEPA (2002) suggested salinity for culturing *A. bahia* is 25 ppt.

Notes: ppt; parts per thousand. Per USEPA (2002): 5-32ppt ±10% for M. beryllina; 5-30ppt ±10% for A. bahia.

Preliminary WET Data - 48-h Response Curves

- Acute effects were bracketed by the selected effluent dilution series.
- A statistically significant dose-response was observed. Some of the preliminary response curves exhibit an "all or nothing" response which is common in WET test data.
- The preliminary results and potential follow-up activities to characterize toxicity are being evaluated.

A=COM

Preliminary WET Data - 48-h Acute WET Test Endpoints

A. bahia (Mysid) is more sensitive than M. beryllina (Inland silverside minnow) in the WET tests performed.

Notes: Error bars represent <u>+1</u> standard error; n=3.

Preliminary Laboratory Analytical Data

- The chemical composition of TCW samples at effluent dilutions of 0.4 to 0.5% was similar to laboratory control seawater.
- Detected above the laboratory reporting limit: Most water quality parameters; total/dissolved metals; and cations/anions.
- Not detected: PAHs; ammonia; chemical oxygen demand; some total/dissolved metals.

 $A \equiv COM$

Next Steps - 2020 TCW Discharge Sampling

• Up to 20 samples could potentially be collected in 2020. Representative samples for 2020 were randomly selected using the variables below:

Input Variable Type	Input Variable	Discrete or Continuous Variable?	Rationale for Selection	
Geographical	Block No.	Discrete	Spatial aspect; position within the study area.	
	Water Column Depth	Continuous		
TCW Fluid Type	Category I			
	Category II			
	Category III			
	Category IV			
	Other	Discrete: Binary "No" = 0; "Yes" = 1		
Chemical Additives	Corrosion Inhibitors		Can influence whole	
	De-emulsifiers			
	Surfactants		effluent toxicity and chemical makeup.	
	Defoamers			
	Biocides			
Discharge Treatment	No Treatment or			
	Tank Storage			
	Tank Storage			
	Filtration			
	Other Treatment			

• OOC plans to discuss the study sampling schedule timeframe with USEPA in April to determine the appropriate time to cease sample collection activities.

